NNNNNNNN

LLNL-CONF-587533

| Characterizing the behavior of

bandwidth-bound applications on
torus networks

N. Jain, A. Bhatele, H. Menon, T. Gamblin, M.
Schulz, L. V. Kale

October 3, 2012

27th IEEE International Parallel & Distributed Processing
Symposium

Boston, MA, United States

May 20, 2013 through May 24, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Characterizing the behavior of bandwidth-bound
applications on torus networks

Nikhil Jain*, Abhinav Bhatelef, Harshitha Menon*, Todd Gamblinf, Martin Schulz’ and Laxmikant V. Kale*

*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
fCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
E-mail: {nikhil, gplkrsh2, kale} @illinois.edu, {bhatele, tgamblin, schulzm}@Ilnl.gov

Abstract—It is well known that the communication perfor-
mance of parallel applications can depend heavily on the mapping
of tasks or processes to physical nodes in the interconnection
network. Much prior work has focused on optimizing latency-
bound algorithms by placing frequently communicating tasks
near each other on the network. However, latency optimizations
do not necessarily help bandwidth-bound applications. To opti-
mize bandwidth, we must maximize the number of links used to
transfer message packets on the network without increasing the
number of messages contending for the same links. This tradeoff
is not well understood.

In this paper, we develop a methodology to correlate network
mappings with the contention they create as well as their impact
on application performance. We develop a novel metric, called
plateau point, that ascribes a single value to the network counter
values for an application run, and we show that this metric is
correlated to communication performance in bandwidth-bound
applications. This metric will enable predicting application per-
formance without doing actual runs or simulations as long as
we have a model for routing of messages through the network.
We also describe the queuing strategy on Blue Gene machines
and the impact of the default settings on the performance
of large messages. Our insights can be applied by network
designers when optimizing for bandwidth-bound applications.
Our study of task mappings and trade-offs between maximizing
effective bandwidth and minimizing network contention is a first
step towards creating automated mappings for bandwidth-bound
applications.

Keywords-task mapping, network contention, hardware coun-
ters, performance prediction, correlation

I. INTRODUCTION

The task mapping problem, i.e., how to optimally map a
set of processes onto a communication network, is of fun-
damental importance to high performance computing because
the networks used on today’s largest machines do not have flat
topologies. To reduce costs and to allow high scalability, the
largest supercomputers have adopted tori, meshes, and other
high diameter networks. If application tasks are laid out poorly
on these topologies, performance can degrade due to high
latency, high contention, or low numbers of available network
links.

Much work has been done to increase the performance
of latency-bound applications running on these networks.
Typically, heuristic algorithms attempt to lay out frequently
communicating tasks so that the number of network hops
between the tasks is minimized. Bandwidth optimization is

fundamentally different. Rather than a clear minimization
problem, bandwidth mapping requires that we maximize the
number of routes available between communicating processes.
We can increase the number of available routes by increasing
the number of dimensions between communicating tasks in
n-dimensional Cartesian networks [8]. This allows for more
bandwidth to be injected into the network through the new
routes, but this will also increase traffic on the links and
thereby increase the potential for contention.

The tradeoff between bandwidth and contention is not well
understood, and this prevents us from reliably predicting the
performance effects of bandwidth-optimizing task mappings
on the largest supercomputer networks. Several obstacles pre-
vent a full understanding. First, contention is fundamentally
a dynamic property that depends on the routing behavior
of the network, the layout of tasks, and the communication
schedule of the parallel application. Typical schemes to predict
contention rely on low-level network simulation [19], [14],
[17]. Second, parallel applications themselves are complex
and dynamic, and they may contain many different non-
overlapping and overlapping communication phases. We can-
not rely entirely on aggregate, whole-run measurements to
predict contention. Finally, while we may be able to posi-
tion tasks to increase available routes between two nodes,
the network may not allow us to inject bandwidth onto all
routes concurrently, reducing the total available bandwidth.
We have discovered that even on networks that do support
high-bandwidth injection, there may be limitations that prevent
high speed injection of certain types of traffic, again making
mapping performance difficult to predict.

In prior work, we introduced primitive task mapping trans-
formations that can increase the available bandwidth in parallel
applications [8]. Our goal is to come up with a set of rules
and heuristics that will enable the generation of automatic
bandwidth-optimizing mappings for parallel codes. To accom-
plish this, we need concise and effective metrics to accurately
estimate the contention/bandwidth tradeoff, so that we can
use these metrics to guide optimization algorithms. This paper
offers the following contributions:

1) We develop a methodology to correlate task mappings
with statistical characteristics of the network traffic they
create and its impact on application performance.

2) We develop a novel metric, called plateau point, that

ascribes a single value to the network counter values
for an application run, and we show that this metric is
correlated to communication performance in bandwidth-
bound applications.

3) We also describe the queuing strategy on Blue Gene
machines and the impact of the default settings on
the performance of large messages. Our insights will
be useful to network designers when optimizing for
bandwidth-bound applications.

The plateau point will enable predicting application perfor-
mance without doing actual runs or simulations as long as we
have a model for routing of messages through the network. Our
study of task mappings and trade-offs between maximizing
effective bandwidth and minimizing network contention is a
first step towards creating automated mappings for bandwidth-
bound applications. We anticipate that it will enable us to
develop predictive heuristics and algorithms in future work.

The remainder of this paper is organized as follows: Sec-
tion II presents related work. In Section III, we describe our
methodology for correlating network counters with application
communication performance. There are important steps in this
process, which are explained in detail in Sections IV, V
and VI. In Section VII, we show the application of our
methodology to different bandwidth-bound applications and
conclude the paper in Section VIIIL.

II. RELATED WORK

Performance analysis of communication patterns and con-
tention on large scale systems has been done in several studies
using either theoretical models, empirical results or a combi-
nation of the two. Studies based on theoretical models such
as LogP [10], LogGP [3], LoPC [12] and LoGPC [15] have
proved useful in understanding generic network characteristics.
However, these models are not accurate for cases with non-
uniform traffic distribution over the network. Non-uniform
traffic distribution is commonly found in most dynamic ap-
plication executions and can be caused by several factors such
as non-uniform communication patterns, the network’s routing
algorithm or limited link bandwidth. On the other hand,
empirical studies [2], [18], [9] have focused on presenting
a large set of results with variation in system configuration,
communication volume and mapping. They also provide a
generic reasoning for the observed performance based on
the understanding of the specific communication patterns and
observed behavior of the networks, but do not provide an in-
depth analysis.

This paper presents an analysis technique that belongs to
the category of empirical studies, but performs a detailed
analysis. We propose a metric based on the flow of traffic on
the network, that correlates with the observed performance.
Other metrics have been proposed previously to predict the
performance of task mapping for a given communication pat-
tern. Several studies [11], [1], [6] have shown that hop-bytes or
average hops per byte correlates well with overall performance
in presence of contention. Hoefler et al. [13] propose the use of
communication volume on individual links as an optimization

metric to design mappings that improve performance. Balaji
et al. [5] have studied the correlation of NO_TOKEN counters
with execution time of global communication patterns on Blue
Gene/P. Bhatele et al. [7] have shown empirically that the
total communication traffic correlates well with the overall
performance for some applications.

III. METHODOLOGY TO UNDERSTAND APPLICATION
COMMUNICATION PERFORMANCE

The effect of task mapping and routing algorithms on
the resulting contention on interconnection networks and the
impact on application performance is not well understood.
Application developers often collect hardware counter data for
the network [7]; however, there is no clear metric correlating
network counter data to actual performance. In this section,
we outline a process of correlating link counter data, obtained
on Blue Gene machines, with actual application performance.
This method can help us develop models for predicting appli-
cation performance given an application communication graph,
its mapping on the network and the routing algorithm for
messages.

The High Performance Monitor (HPM) library on
Blue Gene machines provides network counters such
as the number of packets passing through each link
(BGP_TORUS_XP_PACKETS etc., for the six links on
each node) and the number of times the next node, that
a given node is trying to forward a message to on
an available link, has no buffers to accept the message
(BGP_TORUS_XP_NO_TOKENS etc., for the six links). We
use link counters that give the number of packets passing
through each network link to correlate network traffic with
the application performance. Our hypothesis is that when
comparing two different executions of an application, if less
traffic (fewer packets) pass through most links on the network
in the first execution than the second, then the performance is
better in the first execution.

We can use an empirical probability density function (PDF)
or an empirical cumulative distribution function (CDF) to plot
link counters data and correlate it with performance. Figure 1
shows an empirical PDF (top) and CDF (bottom) for network
counter data obtained for two very different node mappings
applied to pF3D (a multi-physics production application at
LLNL, which is introduced in more detail in Section VII-B)
on 32,768 cores of Blue Gene/P. The x-axis on both plots has
histogram bins that represent the number of packets passing
through each network link (in X, Y or Z direction). The y-axis
in the PDF plot shows the fraction (between 0 and 1) of links
that fall under a particular bin. Hence it shows the distribution
of the number of packets flowing through different links on
the network. In the CDF plot, the y-axis shows the cumulative
fraction of links that send number of packets less than or equal
to the particular bin.

The PDF in Figure 1 shows that Map 1 has about 15%
of links in two bins towards the right that represent around
2 and 3 million packets respectively. Map 2 has these links
in significantly smaller bins on the left, around 0.2 to 0.4

Probability Density Function for Network Links

0.6 T

0.5 |t T Map2.
b, : : : : - Mapl
S04 o e P preee e]
ks : : : : 3 :
§ O3 S S S T 1
B 02 [b
w : : : :

0.1 F-—pf:-ses e :

0.0 : L i :

) 0.5 1 1.5 2 2.5 3 3.5

Number of packets (in millions)
Cumulative Distribution Function for Network Links

2 12
=
©
>
IS
0 (0 T = o
L
9]
X 06 b=t
C
= 1 1
[S) TR S L R R oo]
5 1 : : 1
2 ! ! C3 Map 2 : :
O 02 - e A ... i
© % - [wmap1 : S
e : : . : : :

00 | I | | | L L1

0 0.5 1 1.5 2 2.5 3 3.5

Number of packets (in millions)

Fig. 1: Empirical PDF and CDF of number of packets sent on each network
link for two different mappings of pF3D. The x-axis on both plots has
histogram bins that represent the number of packets passing through each
network link (in X, Y or Z direction)

million packets. If we look at the same information plotted
as a CDF, it is more obvious that Map 2 approaches the
maximal plateau (of 100% of the links sending less than a
certain number of packets) much earlier than Map 2. In order
to capture this notion of when the plateau is reached for a given
mapping/execution, we introduce a metric called the “plateau
point”. The plateau point is a point (x, y) on the CDF curve
and denotes that at this point, y% of all links on the network
send fewer than x number of packets for the profiled region,
with y being 0.9 (90%) in the example shown in the figure.
By varying y, we can identify a point on the CDF curve where
most of the links sent a bounded number of packets. We use
this bound to approximate that position in CDF after which
the CDF flattens. If chosen properly, this bound guarantees
that beyond this point, there will be no steep rise in the CDF,
and hence there will not be any heavily loaded bins to its
right. Our hypothesis is that this bound correlates well with
actual application performance. If the bound is low, there is a
smaller chance of contention and hence better communication
performance.

There is a three-step process to obtain good correlations
between mappings/network counter values and communication
performance using the plateau point. The steps are introduced
below and explained in subsequent sections in more detail:

Step 1. Remove injection bottlenecks: In the process of cre-

ating bandwidth bound mappings, we discovered that adding
more routes for message packets can be futile if the scheme
for injecting messages from the processor onto the links is
not optimal. If the messages for a given destination can use
only one of many queues (FIFOs) for injecting messages,
then increasing the number of available routes for bandwidth
optimization may not improve performance. As a consequence,
the network counters might tell a wrong story because the
bottleneck is not on the links but elsewhere. Hence, it is
important for bandwidth-optimizing mappings to minimize
injection bottlenecks first.

Step II. Breakdown into non-overlapping phases: If an
application with several non-overlapping phases is profiled
from start to end, the network counter values represent the total
network traffic over a span of time. It is possible for a link to
have a very high counter value but its traffic might be spread
over time. Hence, it is extremely important to profile “small”
code regions within the application that are independent and
in which all communication happens simultaneously.

Step III. Decide the plateau point: Assuming that we follow
the two conditions in step I and II, we can use the plateau point
metric to correlate network counter values with performance.
There is still the question of how do we choose a good
value, y for the plateau point (X, y). This will be explained in
Section VI.

IV. STEP I. REMOVE INJECTION BOTTLENECKS

On Blue Gene/P, messages are injected onto the network
using a direct memory access (DMA) engine. To send a
message, a core enqueues a matching message header in one of
the injection FIFOs available within the processor. By default,
6 injection FIFOs are created for messages going out of the
node. The selection of which FIFO to inject the message
header into is done by the core based on the destination node
(Figure 2). The DMA engine inspects the processor injection
FIFOs and copies message data from memory to the torus
injection FIFOs from which it is sent onto the torus links. In
the default setting, there is a one-to-one mapping between the
processor injection FIFOs and the torus injection FIFOs, i.e.,
packets created for a message whose header was inserted into
a particular processor injection FIFO can only be injected into
the corresponding torus injection FIFO. Hence, in this setting,
a message can be injected onto the torus links from one torus
injection FIFO only.

e e
rocser = | oa | g o &
njecion /————— | _gp | ———— Injection S —
FIFOs oo == FIFOs &
— —

Fig. 2: Default one-to-one mapping of processor injection FIFOs to torus
injection FIFOs.

Bandwidth optimizations require placing communicating
tasks on diagonally opposite corners of a cube in order to

Ping Time without Congestion

12000 -
| Path | to | FIFO —>%—
10000 - 2 Paths | to | FIFO --A--
2 Paths | to 2 FIFO =@~
~—~ 8000 - 3Paths | to | FIFO —-8--
2 3 Paths | to 2 FIFO —3--
6000
°§’ 3 Paths | to 3 FIFO _ﬁ
F 4000 rd
2000
e—g—np—=5 O e = =T
2K 8K 32K 128K 512K 2M 4M
Message size (bytes)
Ping Time with Congestion
40 - :
35 L | Path | to | FIFO —>—
2 Paths | to | FIFO --A--
30 - 2 Paths | to 2 FIFO @~
= 25 - 3 Paths | to | FIFO —-8--
2 3 Paths | to 2 FIFO —-3--
2 20 3Paths | to3 FIFO
F I5F :
10 -
5 -
(Ee—TB—E—a——==
2K 8K 32K 128K 512K 2M 4M

Message size (bytes)

Fig. 3: Performance of a one-sided ping for different processor pairs and
different mappings of the processor to torus injection FIFOs

provide multiple paths for the packets to be routed through.
However, this cannot be exploited if the rate of injecting
packets is limited to one torus FIFO for one destination. We
created a simple experiment to test this. We allocate a 8 x 8 x 8
torus on Blue Gene/P and perform MPI_Sends between a pair
of processes. The processes are placed either 1 hop away (1
path between them) or 2 hops away on the corners of a square
(2 disjoint paths between them) or 3 hops away on the corner
of a cube (3 disjoint paths between them). For the default
one-to-one mapping of processor to torus injection FIFOs, we
see no performance difference in the three cases (first three
curves in Figure 3, top). If we look at the traffic flow for the
3 hops/paths case, it looks like the left image in Figure 4.
So even though the network traffic appears to be using three
different paths, we do not see any performance improvement
as compared to the 1 hop/path case. This can be explained by
the default mapping of FIFO queues causing the traffic being
sent along different routes to be not overlapped.

We then modified the default mapping between the two
sets of FIFOs. We tried a 1 processor FIFO to 2 torus FIFOs
mapping and a 1 processor FIFO to 3 torus FIFOs mapping in
addition to the default. We can see that for the 1 to 2 FIFOs
mapping, the performance of the ping improves, by two times,
when placing the processes on a square (2 paths) or cube (3
paths). The performance gets even better when we doa 1 to 3
processor to torus FIFO mapping and place the communicating
processes on a cube. If we look at the network traffic for this

Fig. 4: Visualizations of the network traffic between a pair of processes placed
on the corners of a cube: 1 to 1 FIFO mapping (left) and 1 to 3 FIFO mapping
(right) using Boxfish

last case, it looks exactly the same as that for a 1 to 1 FIFO
mapping (comparing left and right images in Figure 4). The
only difference is that in the image in the right, the packets
are being sent on the network in parallel on various links.

These results suggest that it is important to have a custom
setting for the mapping of processor to torus injection FIFOs to
best utilize the bandwidth in multiple dimensions. Even better
will be scenario if this mapping can be decided on per message
basis instead of being attached for the FIFOs. The network
views that shows the the traffic suggest that it is important
to separate out the packet counter values for different non-
overlapping phases for comparison. In absence of such a
breakdown, the counters are of limited used. The bottom plot
in Figure 3 shows results similar to the top figure but with
an all-to-all communication happening in parallel on all other
processes to create background contention. The results are
similar to the case with no background traffic although the
improvements from custom FIFO/queue mappings are smaller.
This suggest that for an application with every processor
communicating with a large number of processors, and hence
causing congestion on the network, these FIFO mappings may
not impact performance. However, in communication patterns
where the number of neighbors is limited, performing a custom
FIFO mapping may improve performance.

V. STEP II. BREAKDOWN INTO NON-OVERLAPPING
PHASES

If an application with several non-overlapping phases is
profiled from start to end, the network counter values represent
the total network traffic over a span of time. It is possible
for a link to have a very high counter value but its traffic
might be spread over time. Hence, it is extremely important
to profile “small” code regions within the application that
are independent and in which all communication happens
simultaneously.

In this section, we present results for end-to-end runs of
pF3D and NAS-CG (Section VII) — counters and timers are
activated when the application begins execution and are deacti-
vated when the application terminates. Based on these results,
we motivate the need for per-phase breakdown of counters and
timers to accurately correlate observed performance with the
proposed metric.

Figure 5a presents the CDF plots with plateau point at

Cumulative Distribution Function for Network Links

Mapping pF3D CG

Mapl 94.98 28.57
Map?2 95.82 29.27
Map3 98.39 3194
Map4 105.5 3195
Map5 - 32.41

T|>] 1.2 T T T T T T

B 1.0 L m— | Mapl
2 1 Map2
3 0.8] 3 map3
v T Map4
< 06 [P
: 3

c 0.4 |- 1 ;

e 1

= B L

§ 0-2 i 1

- 0.0 ‘i’ I I 1 1 | 1

0 02 04 06 038 1 1.2 14

Number of packets (in millions)
(a) pF3D - Aggregate CDF

Cumulative Distribution Function for Network Links

3 Map1
Map2
Map3

3 mapsa

3 Maps

Fraction of links (cumulative)

Number of packets (in millions)
(b) NAS-CG - Aggregate CDF

Fig. 5: CDF and the plateau point for aggregated counters for the entire run
show weak correlation

(2,0.97) for a pF3D run on 8,192 nodes (32,768 cores) of Blue
Gene/P. Four different tasks mappings, Mapl, Map2, Map3
and Map4, whose execution time increases in the same order,
ie., T]\/Iapl < TMap2 < T]wapg < TMap4 (Table I), were
used in this experiment. It can be seen that, using plateau
point with y = 0.97, the prediction based on z value of
plateau point is not accurate. Even after trying a range of
y values for the plateau point, we did not find any y value
for which the prediction matches the observed performance.
Similar results are observed for NAS-CG as shown in Fig. 5b.
There is approximately 10% performance difference between
the best predicted mapping (Map4) and the best observed
mapping (Mapl). However, note that for both applications,
the prediction of relative performance of many other mappings
was found to be correct.

From these experiments we conclude that there is a possible
correlation between the the = values of plateau points (with
a good y value) and the performance of an application, but
the accuracy of these predictions is questionable for some
cases. This conclusion brings the following question to one’s
attention - did some information get lost due to aggregation of
counters over the end-to-end runs? In the following section,
we attempt to answer this question by performing analysis

TABLE I: Aggregate time (in seconds) for pF3D and CG

Cumulative Distribution Function for Network Links

o 12
= : : : : '
E 1.0 Lo r<_. i -] m— Mapl
g ! ; 3 3 3 Map2
§ 08 F--ooo-- }fp — Map3
9 : 1 : : Map4
=
= . I . . .
© : : : : :
° 04 - pof I P e o e
e : t : : :
© P B..l...... O A S
@ 0.2 : i : : :
b : : : : :
0.0 I |

L L L
0 0.2 0.4 0.6 0.8 1 1.2
Number of packets (in millions)

Fig. 6: CDF for one phase of pF3D: accuracy improves when plateau point
based prediction is done for one single phase

of only one phase of communication of pF3D that does not
overlap with any other phase.

A. Per-phase Analysis

Building on the intuition from the previous section, we
divided pF3D into distinct communication phases (§VII-B),
and analyzed results for them. In Figure 6, we present CDF
plots for one such phase, and analyze its correlation with the
observed performance. We stick to the y = 0.97 value for
plateau point used for the aggregated case for these results.
Predicting based on the = values of plateau points in Figure 6,
the timing for Mapl, Map3 and Map4 for this phase should
be similar. The performance of Map2 should be close, but
slightly worse, given that x value of its plateau point is
to the right of the x value of the plateau point of other
mappings. The observed time for this phase of pF3D is shown
in Table II. It can be seen that the predictions done for this
phase are closer to the observed performance in comparison
with the aggregated results. However, there is still room for
improvement, and the predictions need to be refined further.
In the next section, we explore the solution space for the best
suited y value, and revisit per-phase analysis in Section VIIL.

VI. STEP III. DECIDE THE PLATEAU POINT

The plateau point metric can be used to correlate network
counter values with performance. However, we need to choose
a good value, y for the plateau point (x, y). To recap, at this
point, y% of all links on the network send fewer than x number
of packets for the profiled region. By varying y, we can identify
a point on the CDF curve where most of the links send a

Mapping Time (ms)

Mapl 45.31
Map2 45.96
Map3 44.92
Map4 45.18

TABLE II: pF3D time for one phase

Correlating performance with packet counters

& 20
g 0.99 —%—
S | ,L090--a--
E 7] 080 e
£ 0.70 =8~
g 121060 —¥-
X~

[

& 8f

5

3 4

RRRRR? -~k

=

z

1600

400 800 1200 2000

Performance of different mappings (time in ms)

Pearson Coefficient for Advecton phase

| —
0.98 -
0.96 -
0.94 -
092
09 -
0.88 -
0.86 -

0.84 i i i i i i i i
055 06 065 07 075 08 085 09 095 |

Pearson Correlation

Plateau point (y%)

Fig. 7: Correlating performance and the plateau point by varying y: Advection
phase of pF3D

bounded number of packets. We use this bound to approximate
the position in CDF after which it flattens. If chosen properly,
this bound guarantees that beyond this point, there will be no
steep rise in the CDF, and hence there will not be any heavily
loaded bins to its right.

It is important to find a good value for the plateau point
(y%) to ensure that it correlates with the communication
characteristics well. For this purpose, we generated a large
set of task mappings (60+) for pF3D (Section VII-B), and
experimented with a y value of [0.60, 1.00].

Figure 7 presents the correlation of performance (execution
time on the x-axis) with the x value of the plateau point (on the
y-axis) for different values of y (0.6, 0.7, 0.8, 0.9 and 0.99).
This is for one of the phases of pF3D. Given a value of y, for
each of the task mappings, we add a point to the plot based
on its performance and the x value of the plateau point. In
Figure 7, it can be seen that when y is small, the correlation
is weak: there are many cases in which a mapping performs

Correlating performance with packet counters

300

099 —%—
0.90 --A--

250
0.80 @
200 - 0.70 -

o
o

v
o

¢ i
0 50 100 150 200 250 300 350

Number of packets (in thousands)
@
o

Performance of different mappings (time in ms)

Pearson Coefficient for Hydrodynamic phase

MM""M

0.98 -
0.96 - :
0.94 - !
092 - !
09 !
0.88 - !
0.86 - !
0.84 - i

082 |-
08 |- AAAA

0.78 4A i 1 i i i i i i
055 06 065 07 075 08 08 09 095 |

Pearson Correlation

Plateau point (y%)

Fig. 8: Correlating performance and the plateau point by varying y: Hydro-
dynamics phase of pF3D

better than the other mappings even though its = value (number
of packets) is larger than that of other mappings. Similar
observation can be made for another phase of pF3D shown
in Figure 8. However, in both phases, for the best choice
of y = 0.99, we observe a strong correlation between the
performance and the = values (represented by the enveloping
black curve at the top). This strong correlation is supported by
the high value of Pearson Coefficient which we obtain for these
runs as shown in the figures. For both the phases, we find that
as the x or the number of packets increases, the performance
becomes worse. This suggests that, for the applications used
in this paper, a plateau point with y = 0.99 is a good value
for finding the bin at which CDF reaches its plateau. Hence,
in rest of this paper, we will use y = 0.99 as our plateau point
for our analysis.

It may appear from the above results that one may be able
to correlate performance of a mapping with the number of
packets sent on the most loaded link, and need not look for
a plateau point. This corresponds to using a value of y = 1.0
as the plateau point. In Figure 9, we present the correlation
of performance of NAS-CG with the x values of the plateau
point (Section VII-C) with y set at 1.0. It can be seen in the
given plot that there is little correlation between the packets on
the most loaded link and the observed performance. In a later
section (Section VII-C), we plot a similar graph for plateau
point calculated using y = 0.99, and show a strong correlation
with the performance.

Correlating performance with packets: pleateau point at (x,1.00)

= A

s 21 e

= .

= Pl

£ .

c e

< 19+ S

2 o

S o

2 o

a |7 a2

“ -

9 A &~

H L .

3 A -A ,/

€ I5F A Ao=semmmT [P

=] ’ .-

z a’ i i A i i i i
Il 12 13 14 15 16 17 18

Performance of different mappings (time in s)

Fig. 9: Correlating performance with packets: Why picking y=1.0 for the
plateau point is not good?

VII. CORRELATING APPLICATION PERFORMANCE TO
NETWORK COUNTERS

A. Task Mappings

We use a number of mapping schemes to map the logical
topology of processes (linear, grids, etc.) to the physical
3D-torus of Blue Gene/P. Except for the default rank order
mappings available on Blue Gene/P, we use Rubik [8], a tool
that enables user to describe variations in task mappings using
a small domain specific language, to generate all other task
mappings. The following operations, provided by Rubik, have
been used to generate the task mappings:

Tile - This operation divides a parent space into fixed-size
child spaces or tiles. For example, as shown in Figure 10a, a
3D-grid can be divided into 8 grids. In general, we have tiled
the logical topology and the 3D-torus individually, and mapped
them in a one-to-one manner. Such tiling is very useful when
we have a set of processors, e.g. in a local all-to-all, and we
wish to map them close to each other in a cube.

Tilt - We use tilt operations to shift planes of a topology
normal to their direction in a successively increasing manner
(Figure 10b). This operation is useful in increasing the number
of available paths between neighboring processors.

Zigzag - Zigzag operation is used to apply fixed offset shift
to alternating planes normal to the direction of the plane. An
example shift operation is shown in Figure 10c.

B. pF3D

pF3D [16] is a multi-physics code from the National Ig-
nition Facility at LLNL. It is used to study laser plasma-
interactions in the experiments to predict the amount of
scattering in proposed designs.

The simulated space in pF3D is a 3D-grid whose Z-
direction is aligned with the laser beam. This 3D-grid is
divided among a logical 3D-grid of processes. The simu-
lation consists of three distinct phases: wave propagation
and coupling, advecting light, and solving the hydrodynamic
equations. Wave propagation and coupling consists of two-
dimensional (2D) Fast Fourier Transforms (FFTs) in XY-

(a) Tile operation

(b) Tilt operation (c) Zigzag operation

Fig. 10: Operations in Rubik: tile, tilt, zigzag

planes; the 2D-FFTs are performed via two non-overlapping
1D-FFTs along X-lines and Y'-lines using MPI_Alltoall.
The advection phase involves ghost-plane exchange in the
Z-direction performed using MPI_TIsend and MPI_Irecv.
Finally, the hydrodynamic phase consists of near-neighbor data
exchange in the positive and negative X, Y and Z directions.
The logical 3D-grid of processes used in this paper consists of
16 x 8 processes in XY planes, with the length of Z dimension
calculated based on the total number of processes.

For pF3D, we use a set of seven mappings- two variations
of dimension ordered mapping - TXYZ and XYZT, two types
of tiling - Tile and Tile2, two tilted mapping based on Tile -
Tilt-ZX and Tilt-XZ, and a zigzag mapping - Zig-XZ.

1) X-FFT and Y-FFT: pF3D consists of a 2D-FFT that is
performed using two 1D-FFTs. These 1D-FFT’s are performed
using MPT_Alltall over sub-communicators created along
X and Y dimensions. There is minimal overlap among the
communication of the two 1D-FFTs, and hence we consider
them as separate phases during counter collection.

In Figure 11a, we present CDF plots and the plateau point
of various mappings for X-FFT in pF3D. In the CDF plot,
we see that Tile2 has the plateau point with lowest x value
and hence, we expect its performance to be the best. Tile2
is followed by TXYZ and XYZT, who reach their plateau in
close proximity, and are expected to have similar performance.
Finally, the remaining set of mapping have almost identical x
values of their plateau points, and we expect them to have
matching performance. These predictions are confirmed by
the time plot in Figure 11b where Tile2 outperforms all other
mappings, and is followed by TXYZ and XYZT.

Another important thing to note here is the end point of
CDF curves (which represent the maximum loaded link). We
note that the end points of mappings in similar performing
groups are far apart, and hence do not correlate with their
performance.

Figure 12a shows the CDF plots for the Y-FFT phase.
In contrast to X-FFT, more mappings have distinct CDF
curves, and hence distinct plateau points. Moreover, based
on correlation with x values of plateau points, a different set
of mappings are expected to perform good. The set of three
mapping Tile, Zig-XZ and TiltXZ, are expected to perform
best followed closely by TXYZ. The other three mappings

Cumulative Distribution Function for Network Links

o 1.2 T T T T T T
> : : : : : :
E 10 Tile2
E ' 1 TXYz
3 08 1 xvzT
E 1 Tile
< 0.6 Tilt-zX
5 Tilt-XZ
° 04 _
5 3 zig-xz
S
g o2 _
- 0.0 | T | | |

0 01 02 03 04 05 06 0.7

Number of packets (in millions)
(a) CDF: Projection on x-axis predicts performance

Performance of X FFT in pF3D
100 T T T

Performance of different mappings (time ms)

Tile2 TXYZ XYZT Tile Tilt-ZX Tilt-XZ Zig-XZ

(b) Observed performance

Fig. 11: X-FFT using MPI_Alltoll over sub-communicators: = value of plateau point strongly correlates with the observed performance. As performance
of a mapping gets worse, = value of plateau point moves towards right. Many mappings result in similar CDFs, and have overlapping curves.

Cumulative Distribution Function for Network Links

12 ! ! ! ! T
: : : : : Tile
Zig-XZ
™<YZ
Tilt-XZ
Tilt-zX
Tile2
XYZT

Fraction of links (cumulative)

0.0

l | l l
0 0.2 0.4 0.6 0.8 1 1.2
Number of packets (in millions)

(a) CDF: Projection on x-axis predicts performance

Performance of Y FFT in pF3D
100 T T T

Performance of different mappings (time ms)

Tile Zig-XZ TXYZ Tilt-XZ Tilt-ZX Tile2 XYZT

(b) Observed performance

Fig. 12: Y-FFT using MPI_Alltoall over sub-communicators: x value of plateau point correlates well with the performance. Note the difference from X-FFT

in relative performance of mappings.

have much higher z values for their plateau points, and should
perform significantly worse. A very similar trend is found in
the time plot in Figure 12b. The set of three mappings Tilt-
ZX, Tile2 and XYZT have very bad performance with XYZT
being the worst among them. The other four mappings have
an almost identical performance.

2) Advection: Ghost-Plane Exchange in Z: The Advection
phase of pF3D requires information about adjacent Z planes
to perform its computation. This results in ghost-plane ex-
change when the 3D-space is decomposed onto the 3D-grid
of processes. The communication pattern is similar to ghost-
exchange commonly seen in stencil computation.

We present the CDF curves for this phase in Figure 13a.
Based on the plateau points shown in the CDF plot it is
expected that the set of mappings - Tile, Tilt-ZX, Zig-XZ
and Tilt-XZ - should have similar performance, and will
outperform the other three mappings. The other three map-
pings, TXYZ, Tile2 and XYZT, with increasingly high x

values for their plateau points should perform very badly.
These predictions are confirmed by the timing results in
Figure 13b in which we observe the group of four mappings
with exactly same performance followed by the increasingly
bad performance of the other three mappings.

3) Hydrodynamic: Near-Neighbor Exchange in All Direc-
tions: The last phase of pF3D, hydrodynamic, involves a
near-neighbor exchange in all six directions. Among the
three phases of communication, this phase contains minimum
communication volume. The CDF plots and associated plateau
points for the near-neighbor exchange are presented in Fig-
ure 14a. The CDF plots for all mappings are very similar to the
one for the advection phase and conveys similar information.
The trend in timing plot in Figure 14b conforms with the
prediction.

C. NAS CG

NAS-CG, which is part of NAS Parallel Benchmarks [4],
uses a conjugate gradient method to approximate the smallest

Cumulative Distribution Function for Network Links

12 ! ! ! ! !
: ' : : ' 1 Tile
Tilt-zX
3 zig-xz
Tilt-XZ
3 XYz
Tile2
3 XyzT

Fraction of links (cumulative)

Number of packets (in millions)
(a) CDF: Projection on x-axis predicts performance

Performance of Advection phase in pF3D

~ 1,000 ¢ : ‘ ‘ : ‘ :
g r]
] L 4
£ []
% t i
g

B 00 J
g F |
g [E
CR :
E r 4
&

L=

B 10 £ 4
5 F]
g [4
g I]
S8 b 1
=

o)

(=%

Tile Tilt-ZX Zig-XZ Tilt-XZ TXYZ Tile2 XYZT

(b) Observed performance

Fig. 13: Advection phase: ghost-plane exchange is performed in Z-direction using MPI_Isend/
textttMPI_Irecv. Plateau point of mappings with similar observed performance are very close, whereas for mappings with huge difference in performance,

plateau points are far apart.

Cumulative Distribution Function for Network Links

Tile
Zig-Xz
Tilt-XZ
Tilt-zX
TXYZ
Tile2
XYZT

Fraction of links (cumulative)

Il
0 0.5 1 15 2 2.5

Number of packets (in millions)

(a) CDF: Projection on x-axis predicts performance

Performance of Hydrodynamic phase in pF3D
100 ¢ T T T T T

Performance of different mappings (time ms)

Tile Zig-XZ Tilt-XZ Tilt-ZX TXYZ Tile2 XYZT

(b) Observed performance

Fig. 14: Hydrodynamic phase: near-neighbor exchange in all six direction is done using MPI_Isend/MPI_Irecv; strong correlation is seen between x

values of plateau point and the observed performance

Eigenvalue of a large sparse SPD matrix. It is used to test
performance of irregular memory access and communication
network of a system. It involves two important communication
patterns - a reduction and a transpose exchange. The reduction
phase involves multiple steps of exchanging data among pairs
of processors, which is processed before the next step starts.
Following the reduction, every processors exchanges data with
a transpose processor. Both phases of the communication
consume equal amount of time. Owing to the multi-phase
structure, our analysis technique requires each of those phases
to be analyzed separately. Given the lack of space, we only
perform the analysis for the transpose phase, which is a good
representative of all phases of communication in NAS-CG.
We ran NAS-CG using a customized torus FIFO mapping
in which each processor FIFO is mapped to two torus FIFOs
(Section IV). This setting was chosen because we obtain best
application performance when each processor FIFO is mapped
to two torus FIFOs. The following seven mappings have

been used for presenting results for NAS-CG: two dimension
ordering mappings - TXYZ and XYZT, two tiled mapping -
Tile and Tile2, two tilted mapping - Tilt-XZ and Tilt2-XZ,
and a zigzag based mapping - Zig2-XZ. In addition, we ran
NAS-CG for 4 more mappings whose results are represented
by one of the above mentioned mappings.

In Figure 15a, we present the CDF plots and the plateau
points for the transpose exchange phase of NAS-CG. Note
the relatively high volume of traffic on x-axis (in comparison
to various phases of pF3D). The high volume increases the
impact of every bin, and hence mappings whose plateau point
lie in bins in proximity may have significant difference in
performance. This is in contrast to some phases of pF3D with
low communication volume, where a difference of few bins
did not lead to significant impact on the performance.

Using CDFs in Figure 15a and correlating based on x
values of plateau points, we expect Tilt2-XZ to have the best
performance. It should be followed by Tilt-XZ and Zig2-

Correlating performance with packets: plateau point at (x,0.99)

Number of packets (in millions)

I 12 13 14 15 16 17 18

Performance of different mappings (time in s)

Fig. 16: NAS-CG: Correlating Performance with plateau point

XZ, which should have similar performance as x values
of their plateau points are very close. Following them, we
expect Tile2 and Tile to be the next best but with significant
performance difference. Finally, XYZT and TXYZ, = values of
whose plateau points is very high should have bad but similar
performance.

The timing performance of this phase of NAS-CG is pre-
sented in Figure 15b with time measured in seconds. The first
thing to note is the worst performing pair of XYZT and TXYZ.
Moving left, Tile and Tile2 performs much better, and the trend
conforms with the prediction. Following them, we find the pair
of Zig2-XZ and Tilt-XZ with similar performance. Finally,
Tilt2-XZ is the one with minimum execution time, as predicted
by using = value of its plateau point as the correlation metric.

In Figure 16, we present a correlation plot for = values
of plateau points and observed application performance for
the given mappings. Earlier, in the section on choosing the
best suited plateau point (Section VI), we showed a similar
graph using 1.00 as y value in plateau points, which essentially
implies using the number of packets on the most loaded link
as the metric for predicting performance. We had found that
such a metric did not yield a good correlation (Figure 9). In
contrast, Figure 16 demonstrates that the x values of plateau
point found using plateau points with y = 0.99 correlates well
with the observed performance of NAS-CG.

VIII. CONCLUSION

Understanding and optimizing task mappings is essential to
achieving good performance on current and future HPC plat-
forms. While prior work has investigated this topic for latency-
bound applications, few approaches have targeted bandwidth-
bound applications, in particular, on torus networks. In contrast
to task mappings for latency optimization, which typically
target the minimization of hop counts between communica-
tion partners, mapping bandwidth-bound applications is more
complicated, as it requires placements in a way such that
we maximize the number of paths between communication
partners, while still maintaining some form of locality.

In this work, we address this gap and provide a system-
atic approach to understanding the network performance for
bandwidth-bound applications. Central to our approach is the

plateau point metric, which provides a bound on the amount of
traffic flowing through each link given a fraction of the number
of links being considered. This definition helps omit outliers,
e.g., in scenarios with a single heavily overloaded link. We
show that our metric successfully characterizes the network
traffic of different phases in two applications and enables us
to make predictions about which mapping is best suited for
a application or application phase. This gives us a powerful
predictive capability and lays the foundation for future work
on automatically generating optimal task mappings.

ACKNOWLEDGMENT

This research was supported in part by the Blue Waters:
Leadership Petascale System project (which is supported by
the NSF grant OCI 07-25070) and by the US Department
of Energy under grant DOE DE-SC0001845. This work was
performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-587533).

REFERENCES

[1] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-aware task mapping
for reducing communication contention on large parallel machines. In
Proceedings of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[2] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,
J. Rogers, P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu. Early
evaluation of IBM Blue Gene/P. In SC 08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1-12. IEEE Press,
2008.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. Loggp:
incorporating long messages into the logp modelone step closer towards
a realistic model for parallel computation. In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures, SPAA
’95, pages 95-105, New York, NY, USA, 1995. ACM.

[4] D. Bailey, E. Barszcz, L. Dagum, and H. Simon.
benchmark results. In Proc. Supercomputing, Nov. 1992.

[5]1 P. Balaji, H. Naik, and N. Desai. Understanding network saturation
behavior on large-scale blue gene/p systems. In Proceedings of the
2009 15th International Conference on Parallel and Distributed Systems,
ICPADS °09, pages 586-593, Washington, DC, USA, 2009. IEEE
Computer Society.

[6] A. Bhatele. Automating Topology Aware Mapping for Supercomputers.
PhD thesis, Dept. of Computer Science, University of Illinois, August
2010. http://hdl.handle.net/2142/16578.

[7]1 A. Bhatele, E. Bohm, and L. V. Kale. Optimizing communication for
charm++ applications by reducing network contention. Concurrency and
Computation: Practice and Experience, 23(2):211-222, 2011.

[8] A. Bhatele, T. Gamblin, S. H. Langer, P-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci,
M. Schulz, and C. H. Still. Mapping applications with collectives over
sub-communicators on torus networks. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’12. IEEE Computer Society, Nov. 2012 (to
appear). LLNL-CONF-556491.

[9]1 A. Chan, P. Balaji, W. Gropp, and R. Thakur. Communication analysis

of parallel 3d fft for flat cartesian meshes on large blue gene systems. In

P. Sadayappan, M. Parashar, R. Badrinath, and V. Prasanna, editors, High

Performance Computing - HiPC 2008, volume 5374 of Lecture Notes in

Computer Science, pages 350-364. Springer Berlin Heidelberg, 2008.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. Logp: Towards a realistic model

of parallel computation. In Fourth ACM SIGPLAN Symposium on

Principles & Practice of Parallel Programming PPOPP, San Diego,

CA, May 1993.

NAS parallel

(10]

Performance of NAS-CG

Cumulative Distribution Function for Network Links = 18 f T f
B U6 :
v g
2 Tilt2-XZ - el 7
—_ . =5 —
g TI.|t-XZ é:. 12 B
g Zig2-XZ s 10f i
9 Tile2 g
< Tile £ 8T -
s XYzT 5 el i
C 5}
S TXYZ % ne i
& g
© =
P £ 2 |
= 0
. - Tilt2-XZ Tilt-XZ Zig2-XZ Tile2 Tile XYZT TXYZ
Number of packets (in millions)
(a) CDF: Projection on x-axis predicts performance (b) Observed performance

Fig. 15: NAS-CG: transpose exchange phase of NAS-CG; as the projection onto x-axis moves from left to right, the predicted performance is expected to be
bad; we observe similar trend for predicted and observed performance.

[11] F. Ercal and J. Ramanujam and P. Sadayappan. Task allocation onto a
hypercube by recursive mincut bipartitioning. In Proceedings of the 3rd
conference on Hypercube concurrent computers and applications, pages
210-221. ACM Press, 1988.

[12] M. L. Frank, A. Agarwal, and M. K. Vernon. Lopc: modeling contention
in parallel algorithms. In Proceedings of the sixth ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPOPP
’97, pages 276287, New York, NY, USA, 1997. ACM.

[13] T. Hoefler and M. Snir. Generic topology mapping strategies for
large-scale parallel architectures. In Proceedings of the international
conference on Supercomputing, ICS ’11, pages 75-84, New York, NY,
USA, 2011. ACM.

[14] C.L.Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo. A simulator for large-scale parallel computer
architectures. IJDST, 1(2):57-73, 2010.

[15] C. Moritz and M. Frank. Logpg: Modeling network contention in
message-passing programs. Parallel and Distributed Systems, IEEE
Transactions on, 12(4):404 —415, apr 2001.

[16] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams. Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams. Physics of Plasmas, 7(5):2023,
2000.

[17] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely. Psins:
An open source event tracer and execution simulator. HPCMP Users
Group Conference, 0:444-449, 2009.

[18] J. S. Vetter, S. R. Alam, T. H. D. Jr.,, M. R. Fahey, P. C. Roth, and P. H.
Worley. Early evaluation of the Cray XT3. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2006.

[19] G. Zheng, G. Kakulapati, and L. V. Kalé. Bigsim: A parallel simulator
for performance prediction of extremely large parallel machines. In /8th
International Parallel and Distributed Processing Symposium (IPDPS),
page 78, Santa Fe, New Mexico, April 2004.

